
Software Engineering with LEGO 
Architectural Design: Web Browser Architecture 

 
Some of the common architectural patterns 

Based on “Software Engineering” by Sommerville, 10th edition, Chapter 6, pp. 161-170 
 

Name Layered architecture 

Description 
Organizes the system into layers with related functionality associated with each layer. A layer provides services to 
the layer above it so the lowest-level layers represent core services that are likely to be used throughout the 
system. 

When used 
Used when building new facilities on top of existing systems; when the development is spread across several 
teams with each team responsibility for a layer of functionality; when there is a requirement for multi-level 
security. 

Advantages Allows replacement of entire layers so long as the interface is maintained. Redundant facilities (e.g., 
authentication) can be provided in each layer to increase the dependability of the system. 

Disadvantages 
In practice, providing a clean separation between layers is often difficult and a high-level layer may have to 
interact directly with lower-level layers rather than through the layer immediately below it. Performance can be a 
problem because of multiple levels of interpretation of a service request as it is processed at each layer. 

 
Name Repository 

Description All data in a system is managed in a central repository that is accessible to all system components. Components 
do not interact directly, only through the repository. 

When used 
You should use this pattern when you have a system in which large volumes of information are generated that 
has to be stored for a long time. You may also use it in data-driven systems where the inclusion of data in the 
repository triggers an action or tool. 

Advantages 
Components can be independent--they do not need to know of the existence of other components. Changes made 
by one component can be propagated to all components. All data can be managed consistently (e.g., backups 
done at the same time) as it is all in one place. 

Disadvantages 
The repository is a single point of failure so problems in the repository affect the whole system. May be 
inefficiencies in organizing all communication through the repository. Distributing the repository across several 
computers may be difficult. 

 

Name Client-server (N-tier) 

Description In a client-server architecture, the functionality of the system is organized into services, with each service 
delivered from a separate server. Clients are users of these services and access servers to make use of them. 

When used Used when data in a shared database has to be accessed from a range of locations. Because servers can be 
replicated, may also be used when the load on a system is variable. 

Advantages The principal advantage of this model is that servers can be distributed across a network. General functionality 
(e.g., a printing service) can be available to all clients and does not need to be implemented by all services. 

Disadvantages 
Each service is a single point of failure so susceptible to denial of service attacks or server failure. Performance 
may be unpredictable because it depends on the network as well as the system. May be management problems if 
servers are owned by different organizations. 

 
Name Pipe and filter 

Description 
The processing of the data in a system is organized so that each processing component (filter) is discrete and 
carries out one type of data transformation. The data flows (as in a pipe) from one component to another for 
processing. 

When used Commonly used in data processing applications (both batch- and transaction-based) where inputs are processed 
in separate stages to generate related outputs. 

Advantages 
Easy to understand and supports transformation reuse. Workflow style matches the structure of many business 
processes. Evolution by adding transformations is straightforward. Can be implemented as either a sequential or 
concurrent system. 

Disadvantages 
The format for data transfer has to be agreed upon between communicating transformations. Each transformation 
must parse its input and unparse its output to the agreed form. This increases system overhead and may mean 
that it is impossible to reuse functional transformations that use incompatible data structures. 

 


